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Notes on Black Hole Phase Transitions
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In these notes we present a summary of existing ideas about phase transitions of black
hole spacetimes in semiclassical gravity and offer some thoughts on three possible
scenarios or mechanisms by which these transitions could take place. We begin with
a review of the thermodynamics of a black hole system and emphasize that the phase
transition is driven by the large entropy of the black hole horizon. Our first theme is
illustrated by a quanturatomicblack hole system, generalizing to finite-temperature a
model originally offered by Bekenstein. In this equilibrium atomic model, the black hole
phase transition is realized as the abrupt excitation of a high energy state, suggesting
analogies with the study of two-level atoms. Our second theme argues that the black
hole system shares similarities with the defect-mediated Kosterlitz—Thouless transition
in condensed matter. These similarities suggest that the black hole phase transition may
be more fully understood by focusing upon the dynamics of black holes and white
holes, the spacetime analogy of vortex and antivortex topological defects. Finally, we
compare the black hole phase transition to another transition driven by an (exponentially)
increasing density of states, the Hagedorn transition first found in hadron physics in the
context of dual models or the old string theory. In modern string theory the Hagedorn
transition is linked by the Maldacena conjecture to the Hawking—Page black hole phase
transition in Anti-de Sitter (AdS) space, as observed by Witten. Thus, the dynamics
of the Hagedorn transition may yield insight into the dynamics of the black hole phase
transition. We argue that characteristics of the Hagedorn transition are already contained
within the dynamics o€lassicalstring systems. Our third theme points to carrying out

a full nonperturbative and nonequilibrium analysis of the Iax¥ggehavior of classical
SU(N) gauge theories to understand its Hagadorn transition. By invoking the Maldacena
conjecture we can then gain valuable insight into black hole phase transitions in AdS
space.

1. INTRODUCTION

Thermal fluctuations can induce phase transitions in which the zero-
temperature degrees of freedom are reorganized into a qualitatively different form.
Although there are many familiar examples such as the boiling of water, phase
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transitions also occur in more exotic systems like spacetime geometry. In these
notes (based partly on Chapter 5 of the dissertation work of Stephens (2000)), we
study a spacetime phase transition evident through the spontaneous formation of
a black hole in equilibrium with a thermal environment. We are interested in two
important questions:

1. Why does a black hole phase transition occur?
2. By what dynamical scenario does the phase transition take place?

We gather here some of our recent thoughts and propose some ideas which have
the potential of providing partial answers to these questions.

The abstract nature of the black hole phase transition is a departure from the
more physical systems familiar to us from ordinary experience. No laboratory is
yet equipped with the tools necessary to probe the formation of a black hole in a
phase transition of thermal spacetime, although such situations may have existed
in the very early universe. Here, we want to see how far our understanding of more
accessible physical systems can be applied to similar processes in spacetimes. A
more ambitious intention is to use our knowledge gained from the study of quantum
and classical phase transitions to peer into the complicated workings of general rel-
ativity and semiclassical gravity. General relativity is a highly nonlinear theory and
comparatively little is known about its detailed behavior away from exact solutions.
For example, in the extremely energetic environment of the early universe, general
relativity may exhibit a disordered phase dominated by black holes, worm-holes,
geons, and other nonperturbative gravitational excitations. At even higher energies
near the Planck scale it has long been speculated that spacetime appears as a foam
or froth (Wheeler, 1957). Indeed, the study of Planck scale fluctuations including
gravitational bubbles (Hawking, 1978; Hawkiatal., 1980; Warner, 1982), baby
universes (Coleman, 1988; Colemainal., 1991; Hawking, 1988), virtual black
holes (Hawking, 1996) and black hole pair creation (Busso and Hawking, 1995,
1996; Dowkeret al, 1994; Garfunkleet al,, 1994; Hawkinget al,, 1995) has been
given a solid grounding by Hawking and his associates. Unfortunately, while the
picture of spacetime foam is vivid, it is very hard to realize in quantitative terms:
in part because a theory of quantum gravity does not yet exist. However, it is our
hope that understanding the phase structure of semiclassical gravity provides at
least an angle on the attributes of the transition to quantum gravity.

Black holes bear some similarity to topological defects (Volovik, 1995). They
are both stable, nonperturbative solutions of the classical theory. Both black holes
and topological defects carry with them a remnant of the high temperature phase;
symmetry is restored in the core of topological defects and we are likely to find
a quantum phase of spacetime in the high-curvature region near the black hole
singularity. In addition, as we will show in these notes, the black hole phase
transition is qualitatively similar to the defect-mediated Kosterlitz—Thouless phase
transition in condensed matter and the Hagedorn transition in string systems.
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The analogy between black holes and topological defects is only a partial
reflection of a deeper dialectical relationship existing between condensed mat-
ter physics, including statistical mechanics and hydrodynamics and the so-called
“fundamental” physics such as quantum gravity and particle physics, which refers
to the study of the “basic” constituents of spacetime and matter. The former is un-
derstood in broader terms as a study of the complex organization in structure and
interactions of their constituent elements, whether they be atoms and molecules in
condensed matter, or strings in the formation of spacetime. In this light cosmology
is closer to condensed matter physics than elementary particle physics (Hu, 1988,
1994, 1996, 1999; Smolin, 1995; Volovik, 2000; Zurek, 1996). Condensed matter
systems of atoms and molecules are usually easier to understand than their high
energy counterparts such as strings or geons, and we can exploit these analogies
to illuminate the behavior of systems which are otherwise experimentally and
theoretically intractable. For example, sonic black holes in superfluids such as
Bose—Einstein condensates may provide a testable model of black hole Hawking
radiation (Garagt al., 2000; Jacobson, 1991; Unruh, 1981, 1995). The experimen-
tal tests of physics at high energy scales are (and are likely to remain) relatively
few. In this environment, condensed matter analogs are useful in aiding the probe
of fundamental physics, of relevance here being semiclassical gravity.

In Section 2 we review the thermodynamics of the black hole phase transition,
focusing on the calculation of the semiclassical free energy of a black hole in
thermal equilibrium, represented by the work of York (1986) and Whiting and York
(1988). In Section 3 we review an atomic model of the black hole, first introduced
as a quantum model of black hole microstates by Bekenstein (1999). In original
work we use this model to provide a statistical mechanics of the phase transition
and highlight the important role of black hole entropy. In Section 4 we discuss
the nonequilibrium dynamics of the black hole phase transition. We point out the
inadequacy of the homogeneous nucleation theory of first-order phase transitions
and explore examples from condensed matter (Kosterlitz—Thouless transition) and
string theory (Hagadorn transition) which appear qualitatively similar to the black
hole system. A summary is provided in Section 5. Unless otherwise noted, we use
Planck units for whicth =G =c = 1.

2. SPACETIME THERMODYNAMICS

For normal matter, gravitational interactions are universally attractive and
a self-gravitating system is fundamentally unstable to collapse. For example, a
nonrelativistic ideal homogeneous fluid with densityand sound speed; is
unstable to long wavelength density perturbations. Perturbations with wave vector
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will grow exponentially. This is the Jeans instability. Since gravity cannot be

screened, gravitational instabilities remain for a system in thermal equilibrium.
Compress an ideal, isothermal, self-gravitating gas below a critical volume and
the gas will collapse.

Quantum effects induce additional instabilities to a classical thermal gravita-
tional system. In particular, hot, flat space is unstable to the (quantum) nucleation
of black holes (Grosst al., 1982). Using the techniques of Euclidean quantum
gravity, the nucleation of black holes was identified through the discovery of a
Schwarzschild instanton contributing an imaginary piece to the free energy of the
system. The nucleation rate is maximum for a black hole with rivass 1/(87 T)
and is (approximately) given by

I~ T5exp<— (2.2)

1
167TT2) '
A black hole nucleated at temperatdreas in unstable equilibrium with a thermal
environment of the same temperature. If, in a fluctuation, the black hole absorbs a
small amount of radiation, its Hawking temperature decreases (black holes gener-
ally have negative specific heat). As the black hole grows it becomes colder still,
absorbing more radiation and eventually engulfing the system. Thus, altliough
is small except near the Planck scale, the negative specific heat of nucleated black
holes renders the canonical ensemble of hot, flat space ill-defined.

Black hole systems can be rendered thermodynamically stable with the addi-
tion of special boundary conditions or when placed in spacetimes with a negative
cosmological constant (Hawking and Page, 1983). In the following we fix the
temperaturel’ on an isothermal boundary of radiugontaining a black hole of
massM. In equilibrium, the Hawking temperature measured on the boundary must
equal the boundary temperature,

1 1
87M /1 _ 2r_|v|
Equation (2.3) admits two real, nonzero solutions for the mass: a smaller, unstable
black hole with mas$/; and a larger, stable black hole with mads,

T@) = (2.3)

1 1
My~ — |1 2.4
! 87TT|: +8an]’ (2.4)
r 1
My~ —[1— ——|. 2.5
2 2[ (4an)2} (2:5)

The isothermal boundary rendeké, thermodynamically stable because of the
temperature redshift. A fluctuation thatincreaksalsoincreaseshe temperature
of the black hole as measured on the boundary, giMag positive specific heat.
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Surprisingly, for

T<T.= @ (2.6)
8rr

no real valueM can solve Eq. (2.3) and no black hole can exist in the box. It,
therefore, appears that as the temperature on the boundary is increasécdfrom
a phase transition to a black hole spacetime occufs-atT..

To further elucidate the thermodynamics of the black hole system and the
nature of any potential phase transition we consider the canonical partition function
defined through an Euclidean path integral (Hawking, 1979),

Iglg]

Z[p] = f Dlgle ¥, 2.7)

where we have temporarily restored thdependence in anticipation of the semi-
classical limit. The Euclidean action is obtained from the Lorentzian Einstein—
Hilbert action (with boundary terms) through the Wick rotatibry> —it. The
functional integration is taken over real Euclidean metrics, periodic in imaginary
time coordinater with period equal to the inverse temperat@eApart from
artificial toy models, the full functional integral is intractable. However, in the
semiclassical limitif — 0), the integrand is highly peaked around metrics that
minimize the classical Euclidean action. In the semiclassical limit we evaluate
the partition function for the system consisting of a single black hole in a fi-
nite cavity with boundary topologg! x S? (the partition function beyond the
semiclassical approximation was considered in Whiting and York (1988)). The
action is

1 .1 .
IE_l&T/R/@d x+8n7§Kﬁd X, (2.8)

whereK is the trace of the extrinsic curvature of the boundary ganid the de-
terminant of the induced three-metric. The free energy of a single Schwarzschild
black hole of masM within the cavity is given byf = g~1Ig where the Euclidean
action Eq. (2.8) is evaluated for the metric

2M 2M\ ?
ds® = (1— r—) de? + (1— T) dr2 +r2dQ2. (2.9)

andt is a Euclidean time coordinate with perigd Normalized so thaF = 0
whenM = 0, the semiclassical free energy is

[ 2M
F(M,r,T)=r —r 1—7—4nM2T. (2.10)

In Fig. 1 we plot the free energly(M) at various temperatures for a sys-
tem with box size = 10. From the top down, the first curve is for temperature
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Fig. 1. Plot of the free energy versus mass of the black hole system.

T = 0.01, below the critical temperatufig = 0.021. The next curve is fofF = T..
The lower three curves are for= 0.25,T = 0.4, andT = 0.5, respectively. For
temperatures beloW no black hole is present. At = T, an extremum appears at
M = M; = M, (where the free energy is flat). For temperatures afiptieere are
two extrema, the unstable black hole with m&&sand the stable black hole with
massM,, in agreement with the simple arguments at the beginning of the section.
Figure 1 also suggests that the transition to a black hole spacetime Blumaurs
discontinuously. Abové; a finite mass black hole can be nucleated in equilibrium
with the walls of the box.

The nucleation of a stable black hole Bt= T, doesnot necessarily sig-
nal a phase transition. A system in thermodynamic equilibrium always resides
in a state of lowest free energy. A phase transition may occur only if the free
energy of the system with the black hole is lower than the free energy with-
out the black hole. At temperatures beldwno black hole is present and the
free energy is approximately that of a box filled with thermal gravitons (hot, flat
space),

Fiis ~ — T4 3. (2.11)

The free energy of hot, flat space is negative. Therefore a phase transition from hot
flat spacetime to a black hole spacetime can only occur at temperaturek, for

which F(M,) < Fyss. In Fig. 1 the temperature is low enough thats ~ 0 and a

black hole phase transition occurs whHe¢Vl,) < 0.

The nucleation of a black hole in equilibrium with the walls of the box is very
different from the result of classical gravitational collaspe. If the box is uniformly
filled with massless thermal radiation, we approximate the collapse temperature
as the temperature for which the Schwarzschild radius for the thermal energy of
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the radiation is equal to the box size,

ngl,apsﬁ ~T. (2.12)
ThusTeoapse™~ 1/4/T, qualitatively distinct from the nucleation temperature.

The phase transition also does not occur at a high temperature characteristic
of quantum gravity. In fact, as the size of the box is increased the critical temper-
ature decreases and is arbitrarily low for arbitrarily large boxes. The stable black
hole formed at temperatures abokgs large, with a masM, on the order of the
size of the box. These considerations seem to be paradoxical. How can such a large
energy € ~ M) fluctuation actuallyower the free energy of the system at such
low temperature§ <« M? The answer lies in the enormous entropy black holes
hold within their horizon. The free energy results from a competition between the
internal energy and the entrogy,= E — TS For a black holeE = M and the
entropy is proportional to the area of the horiz8rz 47 M?. Because the entropy
is growing with mass faster than the energy, there is always a critical temperature
above which the entropy completely compensates for the energy cost of making a
black hole and the black hole spacetime is the lowest free energy state.

3. EQUILIBRIUM BLACK HOLE ATOMS

The black hole phase transitionéstropicallydriven. Therefore, an under-
standing of the nature of black hole entropy may offer potential insight into the
details of the transition. In this section we study a toy model for black hole mi-
crostates, focusing on their implications for the thermal black hole system.

The origin of black hole entropy has been an outstanding problem since
Bekenstein firstintroduced the concept (Bekenstein, 1973). A complete resolution
likely requires a consistent theory of quantum gravity, which has so far proved
elusive. However, just as semiclassical reasoning such as the Bohr model was
important in the early development of quantum theory and the interpretation of
atomic spectra, a similar approach may be fruitful in understanding some of the
microscopic features of black hole entropy (Bekenstein, 1999). It is not our in-
tention to survey the large number of semiclassical black hole models. However,
common to many is the quantization of the horizon area into equally spaced levels
(see Kastrup, 1997 and references therein),

A=an; n=12... (3.1

whereq is dimensionless but as yet unspecified and the area is given in units of
Planck area. For a black hole of madsthe entropy,

A
S= 2 = 47 M?, (3.2)
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and thus the mass of the black hole is also quantized,

M = y/n, (3.3)

wherey = /a/16x. If the energy levels have degeneragfy), the black hole
entropy may simply count the number of available microstates for a fixed energy
leveln, S=In g(n). In this case,

g(n) = e, (3.4)
Sinceg(n) must also be an integer,is restricted,
a =4 Ink; k=2,4... (3.5)

Equations (3.3), (3.4), and (3.5) define a semiclassical black hole model in analogy
with the Bohr model of an atomic systemklf= 2 the large degeneragyn) can be
thought of as the number of ways to make a black hole imthdevel by starting
in the ground state (Mukhanov, 1986), although there are other interpretations
(Danielsson and Schiffer, 1993; Kastrup, 2000). Our interest in the atomic black
hole model is its behavior in thermal equilibrium.

The partition function for the quantum black hole (QBH) atom in the canonical
ensemble is

Z[T] = i ke (3.6)
n=0

Without modification, the sum in Eq. (3.6) does not converge. Convergence is ob-
tained upon analytic continuation but the partition function acquires an imaginary
piece (Kastrup, 2000). In light of the discussion of the previous section this is not
at all surprising. Without either invoking special boundary conditions or special
spacetimes, the thermodynamics of black holes is not well defined. In fa@,) Im(
is due precisely to the nucleation of black holes. To obtain a well-defined and real
partition function we take a new approach and place the quantum black hole atom
into a box of radiug . The box is realized as a sharp cutoff in the energy levels
accessible to the black hole,
r2

Nmax = 4—)/2 3.7)
This is reasonable as the box acts to remove energy levels with Schwarzschild
radius larger than. The canonical partition function for the quantum black hole
atom in a box is

N

|

=z
5

Z[T1=Y ke (3.8)
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Fig. 2. Plot of the average enerdy versus temperaturE for the black hole atom.

In Figs. 2—4 we plot the average energy, specific heat, and entropy as a function
of temperature for a quantum black hole atom in a box with radigs10. The

plots were made with rescaled variables> yT,r — yr and for the particular
choicek = 2. All thermodynamic quantities were calculated using the partition
function Eg. (3.8).

Inspection of Figs. 2—4 reveals a sharp transition from the ground state to a
highly excited state in the black hole atomic system. This is reminiscent of the
phase transition behavior that we saw in the previous section. To quantify this
behavior consider the effective Boltzmann factor of lavel

f(n) = —V?*/ﬁ +nink. (3.9)
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Fig. 3. Plot of the specific hedl, versus temperaturE for the black hole atom.
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Fig. 4. Plot of the entropyS versus temperaturE for the black hole atom.

For smalln, f(n)is negative and higher energy levels are suppressed, as is usually
the case. However, since the degeneracy growsthgere is always an energy level
nc(T) defined byf (n;) = 0 beyond which degeneracy compensates for the higher
energy. Levels beyond,. areenhancednot suppressed. At oW, Nn(T) > Nmax

and these enhanced levels are not part of the allowed spectrum.idgeases
n¢(T) decreases and a transition to the higher levels occurs ngf€) = Npax. If

we adopt this picture of the black hole phase transition the critical temperature is

1
= —. 3.10
c= 5 (3.10)
The average energy at the critical point is
r
E(Te) ~ ef(nc(Tc»V\/ Nmax = 5. (3.11)

2

These equations reveal two important details. First, although the numerical factors
are slightly different they have the same qualitative structure as their thermody-
namic counterparts, Egs. (2.6) and (2.4). Second, neither equation contains the one
free parametek of the black hole atom. In fact Egs. (3.10) and (3.11) are largely
independent of the details of the spectrum of the black hole atom and apply even
when the horizon area is quantized into nonuniform levels.

At first glance, our study of the quantum black hole atom in thermal equilib-
rium appears to only slightly advance our understanding of the black hole phase
transition. We have simply reaffirmed the fact that a system with finite energy (lim-
ited by the boundary conditions) and obeying a thermodynamic relStiedr E?
will always have a transition to the highest allowed energy state, the details of which
are largely model independent. But in principle the quantum black hole atom al-
lows us to go farther. We can now imagine treating dynamical processes such as
emission and absorption much as we do with more common atomic systems. In
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fact only two levels, the ground state and the highest allowed excited state, are
significantly populated below and above the transition and we may further ap-
proximate our system as a quantum two-level atom (2LA), a popular system of
study. Since the quantum black hole transition occurs as the excitation of a high
energy state, the dynamics of this atomic excitation approximate the dynamics of
the black hole phase transition.

Our analysis of the quantum black hole atom in thermal equilibrium under-
scores the entropic nature of the black hole phase transition. This result is useful
in itself. Following the dynamics of the black hole phase transition through a fully
nonequilibrium formulation of semiclassical gravity is a very hard problem to
which, at the moment, there is no direct method of attack. The study of simpler
systems like the QBH 2LA with a similar entropic transition is likely to yield
insight into the dynamics of the black hole phase transition. In the next section we
turn our attention to these dynamical issues.

4. NONEQUILIBRIUM DYNAMICS

Figure 1 appears qualitatively similar to the free energy of a system under-
going a (strongly) first-order phase transition. The usual field theoretic treatment
of the dynamics of first-order phase transitions is based upon the homogeneous
nucleation theory developed by Langer (see, e.g., Langer, 1992). In homogeneous
nucleation, widely separated spherical bubbles of the stable phase nucleate in a
background of the unstable phase. If the bubbles are larger than a critical ra-
dius, the volume energy of the stable phase inside the bubble is less than the sur-
face energy and the droplet will grow. The phase transition completes as droplets
of the stable phase expand to fill the volume of the system. In this picture, the
black hole phase transition occurs when an unstable black hole with khass
nucleates (with probabilitp ~ e~ #FMy and grows to form the stable malsk
through the absorption of thermal radiation. There are reasons to believe, how-
ever, that homogeneous nucleatiom@t the correct description, as we indicate
below.

The free energy of the black hole system is calculated under the assumption
of spherical symmetry, adequate only for a single black hole. In equilibrium, a
single black hole is preferred because it maximizes the entropy. For example, in a
state with two black holes,

Sne + Sy ~ M3 + M) < S, ~ (Ma + Mp)2. (4.2)

However, the dynamics of the phase transition may involve multiple balck holes.
Black holes are strongly interacting gravitational systems, unscreened by thermal
fluctuations. Itis possible that the dynamics of the phase transition proceeds by the
(exponentially more probable) nucleation of small black holes with mmags M;

which then merge to form larger holes. Phase transitions in which there are
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strong interactions between bubbles of the new phase lie beyond the scope of
homogeneous nucleation.

To approach the dynamics of the black hole phase transition we study the
dynamics of similar physical systems. The black hole phase transition is driven by
the large amount of black hole entrofy~ E2. A thermodynamic relation where
the entropy grows rapidly with energy is very unusual. For example, a classical ideal
gas has entrop$ ~ In (E). However, there are examples of systems that exhibit
similar entropic transitions. In particular we examine the Kosterlitz—Thouless (KT)
transition in a globalO(2) model in 24 1 dimensions (Kosterlitz and Thouless,
1973) and the Hagedorn transition (Hagedorn, 1965) in string systems.

4.1. Kosterlitz—Thouless Transition

In two spatial dimensions, finite temperature fluctuations destroy long-range
order in systems with broken continuous symmetries. Only at zero temperature
does the order parameter develop a nonzero thermal expectation value (Mermin
and Wagner, 1966). However, atlow temperatures, systems wil{Zrsymmetry
do exhibitalgebraicorder: the order parameter decays (in space) with a power-
law, much like higher-dimensional systems near a critical point. Since there is
complete disorder at high temperatures (exponential decay of the order parameter)
there must be a transition from high temperature disorder to algebraic order. This
transition is unusual because it is driven by the fluctuations of vortex topological
defects.

To illustrate the KT transition we consider a gloliaf2) scalar field model
with Hamiltonian,

(e (Yozz , 22 22
H—/dx(2|V¢|+8(¢ n)). @.2)

This model admits vortex topological defects. The energy of a vortex of single
winding is

R
E~ (In 2t An2a2> , (4.3)

wherea ~ 1/(+/An) is the vortex size anR is the size of the system. R > athe
energy of the vortex is dominated by gradient energy, the first term in Eq. (4.3). If
a vortex can be nucleated anywhere in the system then the entropy is

S= |n(§)2, (4.4)
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and the free energy of the system with a single vortex is

F = (mn?—2T) |n<§> : (4.5)

Inspection of the free energy reveals that above the critical temperature
7'”72
5
it is thermodynamically favorable to nucleate vortices. This is the KT transition.
It is the proliferation of vortices that leads to the destruction of order abgwét
low temperatures vortices exist as a low density of tightly bound vortex—antivortex
pairs with zero net topological charge. As the temperature increases, both the
density of pairs and the average vortex—antivortex separation also increase. In
addition, as the separation increases, thermal fluctuations are more effective in
screening the interaction between defects in a vortex—antivortex pair. When the
critical temperature is reached, screening is complete and the vortex—antivortex
pairs unbind leaving a gas of essentially free topological defects.

The vortex-driven KT transition provides a potentially useful framework for
studying the the black hole phase transition. Analogous to the black hole transi-
tion, the nucleation of a vortex with ener@yproduces a large amount of entropy
S~ E which drives the phase transition. The natural analogy of an antivortex in
the black hole system iswhite hole, a spacetime region that expels all world-
lines. A white hole is the time-reverse of a black hole, just as (e.g., in superfluid
helium) an antivortex is the time-reverse of a vortex. In fact, a thermodynamic
spacetime system obscures the differences between black holes and white holes:
an evaporating black hole looks like a white hole (Page, 1981). The analogy of
the KT transition suggests that the black hole phase transition might be more fully
understood by focusing upon the dynamical behavior of black holes and white hole
in thermal equilibrium. Below the critical temperature of the black hole system we
expect to find an equal population of small (Planck scale) black holes and white
holes continually fluctuating in and out of existence. The black holes result from
collapsed thermal radiation while the white holes result from evaporating black
holes. Perhaps the black hole phase transition is triggered by a slight overproduc-
tion of black holes which then grow and coalesce to form the large black hole
characteristic of the equilibrium state abdve

There are differences between the vortex and black hole system. The vortex
entropy results from the possible locations of the vortex and not, as in the black
hole, from internal states. In addition, in distinction to vortices, black holes and
white holes do not carry opposite (gravitational) charge. It is therefore likely that
the mechanism driving the black hole phase transition is different in detail from the
unbinding of black hole-white hole pairs that we would expect if the KT analogy
held exactly.

T = (4.6)
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The KT transition provides an excellent example of a dual theory. The ther-
modynamics of the model with Hamiltonian (4.2) is in principle fully described by
the O(2) field theory. However, a full characterization of the thermodynamic prop-
erties requires a nonperturbative analysis of the field theory (for example through
the use of lattice simulations). In the dual vortex approach the system is described
as a Coulomb gas of charged vortices. Because vortices are nonperturbative field
excitations, the dual vortex theory provides information complementary to the
field order parameter. This information can be used to build a picture of the phase
transition which (although completely equivalent) is accessible only through a
highly nonperturbative analysis of the field theory. Unfortunately, for the space-
time phase transition there is no rigorous technique for a nonperturbative analysis
of the underlying field theory of general relativity. It will take a more developed
theory of quantum gravity than we presently have in order to fully understand the
dynamics of the black hole phase transition. What our anatj@ssuggest is
that black holes and white holes may be the relevant degrees of freedom. Focusing
upon them effectively provides a new angle towards the dynamics of the black
hole phase transition. As an example, we provide below an explicit model aimed
at studying the dynamics of a black hole gas.

4.1.1. Black Hole Gas

To study the possibility that the dynamics of black hole phase transition
proceeds through the nucleation and merger of small black holes we propose
a model in which black holes are treated as a gas of gravitationally interacting
particles. The number of particlesnstfixed, but changes through the stochastic
nucleation of small black holes, mergers, and Hawking evaporation. To incorporate
the interaction of black holes with the thermal environment the mass of each particle
is not constant but changes in proportion to the free energy of a single black
hole,

dmt)  &F
ot " om *7)

From F(m) given by Eq. (2.10) we obtain the phenomenological relation

t 1
dmit) =— + 87mT, (4.8)
dt 1_2m

r

whereT is the temperature andis the size of an effective boundary. With a
time-dependent mass given by Eq. (4.8) black holes are stable only above a crit-
ical temperature, as we expect from previous discussions. The difference and
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advantage of this model is that above the critical temperature, a stable black
hole can form by small mergers, in addition to a single large fluctuation. A con-
ceptually similar approach but with very different emphasis was considered in
Ellis et al. (1999). We hope to report on the analysis of this black hole gas model
in the near future.

4.2. Hagedorn Transition

A system of fundamental closed bosonic strings in thermodynamic equilib-
rium possesses an exponential density of states (Hagedorn, 1965)

v(E) ~ expB1E), (4.9)

wherefy is the model and dimension dependent Hagedorn temperature. Above
the Hagedorn temperature the exponential density of states renders the partition
function ill-defined and a physical description of the system is unclear.

As has been previously noted (see, e.g., Bowick and Wijewardhana, 1985)
the rapidly growing density of states responsible for the Hagedorn transition is
qualitatively similar to the large black hole entropy driving the black hole phase
transition. In fact, recent advances in string theory reveal a much stronger link
between the Hagedorn transition and the formation of a black hole.

In string theory, the formation of a black hole in Anti-de Sitter (AdS) space-
time is linked through a hypothesized AdS/CFT correspondence to the Hagedorn
transition in largeN SU(N) gauge theory (see Aharoeyal., 2000 for a compre-
hensive review). The thermodynamics of a semiclassical black hole system in a
spacetime with negative cosmological constant is qualitatively similar to the black
hole in a box discussed previously in Section 2. In particular, a black hole phase
transition, the Hawking—Page transition (Hawking and Page, 1983) occurs at a
critical temperature

Te ~ VIA| (4.10)

whereA is the (negative) cosmological constant. Exploiting the AdS/CFT corres-
pondence, Witten (1998) argued that the enormous entropy released in the decon-
finement transition of a supersymmetric gauge theory defined on the boundary of
AdS spacetime has a dual bulk interpretation as a black hole forming through the
Hawking—Page phase transition. Insight into the interpretation of the Hagedorn
transition is obtained by examining the relationship between string theory and
Quantum Chromodynamics (QCD). QCD is the (nonabelian) SU(3) gauge the-
ory of strong interactions. The fundamental degrees of freedom are three col-
ored fermionic quarks interacting via bosonic gluons. QCD displays asymptotic
freedom: at high energies the QCD coupling is weak and quarks are effectively
free. However, at low energies QCD is strongly coupled and quarks exist only in
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tightly bound color singlet states, hadrons and mesons. Between the two regimes,
QCD is expected to undergo a deconfinement phase transition at which hadrons
and mesons melt into their constituent quarks. The |&ggHooft, 1974) and
strong coupling (Wilson, 1974) limits of QCD may be described by a fundamental
string theory and the link between QCD and string theory provides a physical
picture of the Hagedorn transition: the proliferation of string states at the Hage-
dorn temperature corresponds to the emergence of quark color degrees of freedom
at deconfinement (Olesen, 1985; Pisarski and Alvarez, 1982; Salomonson and
Skagerstam, 1986). Through the AdS/CFT correspondence the deconfinement
phase transition corresponds to the Hawking—Page black hole phase transition.
These arguments present the possibility that the dynamics of the Hagedorn tran-
sition is similar to the dynamics of black hole formation in the Hawking—Page
transition.

Itis not clear off hand which is more tractable: the dynamics of the Hagedorn
transition in fundamental string theory or the dynamics of the black hole phase
transition. However, the exponential density of states, Eq. (4.9), also occurs in
classicalstring systems (see, e.g., Sakellariadou, 1996; Smith and Vilenkin, 1987).
The advantage of a classical system is that the full nonperturbative dynamics is
accessible (albeit often only through numerical simulations). In a classical string
system, the Hagedorn transition corresponds to the abrupt formation of infinite
string. To date, only the equilibrium properties of the Hagedorn transition in clas-
sical string systems have been explored. We propose to study the nonequilibrium
dynamics of this transition. As a start, not only is it an interesting physical problem
in its own right, it may also provide a tangible analogy for the dynamics of the
black hole phase transition through the correspondence mentioned above. Much
as the dynamics of a first- or second-order phase transition (nucleation or spinodal
decomposition) is described independently of the particular system under investi-
gation, the dynamics of the Hagedorn transition may have similar universal traits
worthy of our perusal.

5. SUMMARY

In these notes we have explored the basic issues and proposed some novel
mechanisms in black hole phase transitions in semiclassical gravity. We reviewed
the semiclassical thermodynamics of the black hole system and determined that
the black hole phase transition is entropically driven: it occurs because the large
entropy of a black hole compensates for the energy cost of formation and lowers
the total free energy of the system. This view was reinforced through the analysis
of an atomic model of a quantum black hole in thermal equilibrium. In this model,
the phase transition occurs as the abrupt excitation of a high energy state above
the critical temperature. Thus, the study of atomic emission and absorption in this
black hole atom may provide intuition about the black hole phase transition. The
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detaileddynamicf the black hole phase transition remain an open problem. We
argued that homogeneous nucleation does not apply to phase transitions in which
there are strong interactions among bubbles of new phase, as is the case for the
black hole system. We then appealed to the study of similar entropic transitions
and observed that the black hole phase transition contains elements of both the
Kosterlitz—Thouless and Hagedorn phase transitions. Reasoning by analogy, we
argued that the dynamics of the black hole phase transition might be similar to the
dynamical formation of long string in the nonequilibrium quench of a classical
string system. Work in these directions is in progress.
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